Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000× optical power gain

Cheng Ma, Xiao Xu and Lihong V. Wang*

Optical Imaging Laboratory, Department of Biomedical Engineering,
Washington University in St. Louis, St. Louis, Missouri 63130-4899
*Corresponding author: lhwang@wustl.edu

Supplementary note

Signal-to-noise ratio (SNR) of optical detection

If the incident optical illumination generates an average photocurrent $\overline{i_s}$, the amplitude SNR of the photodetector output is 29

$$SNR = \frac{\overline{i_s}}{\sqrt{\left[2e\overline{i_s} + 2e\overline{i_b} + \frac{4k_BT}{R_L}\right]\Delta \nu}},$$
 (S1)

where e is the elementary charge, $\overline{i_b}$ is the average reverse bias leakage current, k_B is the Boltzmann constant, T is the absolute temperature, R_L is the load resistance and $\Delta \nu$ is the bandwidth of the detector. The three terms on the denominator account for the signal shot noise, dark-current shot noise, and thermal noise.

A pulse with a duration τ_p has a bandwidth of $\Delta \nu \approx 1/(2\tau_p)$. Denoting the pulse energy as E_p , the bandwidth can be expressed in terms of E_p as

$$\Delta v = \frac{\overline{i_s}}{2E_p \rho_d}, \qquad (S2)$$

where $\rho_{\rm d}$ denotes the photodetector's responsivity. Inserting Eq. (S2) in (S1) we get

$$SNR = \sqrt{\frac{E_{p}}{\frac{\alpha}{P} + \beta}} . {S3}$$

In Eq. (S3), $\alpha = \left(e\overline{i_{\rm b}} + 2k_{\rm B}T/R_{\rm L}\right)/\rho_{\rm d}^2$ and $\beta = e/\rho_{\rm d}$ are constants, and \overline{P} denotes the average power of the pulse $(E_{\rm p}/\tau_{\rm p})$.

Reference

29 Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering). (Oxford University Press, Inc., 2006).

Supplementary figure

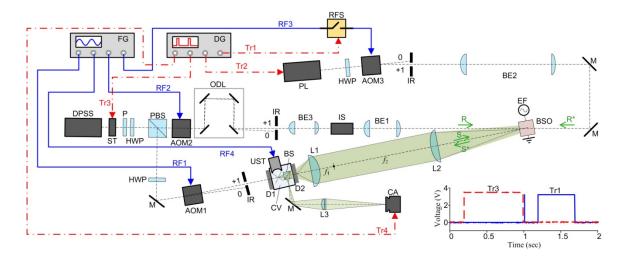


Figure S1. System setup. AOM, acousto-optic modulator; BE, beam expander; BS, 50:50 non-polarizing beamsplitter; BSO, Bi₁₂SiO₂₀ crystal; CA, CMOS camera or photodiode; CV, water-containing cuvette; D, diffuser; DG, delay generator; DPSS, diode-pumped solid-state laser; EF, externally applied field; FG, function generator; HWP, half-wave plate; IR, iris; IS, optical isolator; L, lens; M, mirror; ODL, optical delay line; P, optical polarizer; PBS, polarizing beamsplitter; PL, pulsed laser; RF, radio-frequency driving signal; RFS, radio-frequency switch; ST, optical shutter; Tr, trigger signal; UST, ultrasonic transducer. Inset: oscilloscope traces of Tr1 and Tr3.